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Abstract—Steady laminar natural convection above a horizontal line heat source and a point heat
source are analysed mathematically. The solutions of elementary functions are given for Pr = 2, and

also for the flow above a point source for Pr = 1.
The velocity and temperature distributions for the case of Prandt] number equal to 0-01, 0-7 and 10

are computed with an electronic computer, and differences, caused by different Prandtl number,
among the velocity distributions or the temperature distributions are described in detail.
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NOMENCLATURE
specific heat of the fluid at constant
pressure;
nondimensional  stream  function,

defined in equation (6) or (11, 6);
gravitational acceleration;

Grashof number defined in equation
(7) or (IL, 7);

nondimensional temperature, defined
in equation (6) or (11, 6);

v/k, Prandtl number;

rate of heat transfer from unit length
of a line source (kcal/mh);

rate of heat transfer from a point
source (kcal/h);

fluid temperature above the ambient
temperature;

velocity components indicated in Fig. 1;
co-ordinate system indicated in Fig. 1;
volumetric thermal expansion co-
efficient ;

specific weight of the fluid (kg/m?);
number with dimension of temperature,
defined in equation (13) or (11, 13);
Mepy, thermal diffusivity of the fluid;
thermal conductivity of the fluid;
kinematic viscosity of the fluid;
independent variable of the “similar”
solution, defined in equation (6) or
(L 6);

¥, stream function defined in equation (5)

or (II, 5).
Subscripts
1, for the line heat source;

7, for the point heat source,

INTRODUCTION

IN NATURAL convective heat transfer, fluid
particles in the boundary layer, after separating
from the vicinity of the heating surface, also
form a certain layer which is similar to the
boundary layer. For example, a plume of heated
fluid above a horizontal pipe or a column above
a small body is formed. Though these circum-
stances are similar to the trailing vortex-sheets
in the case of forced convection, buoyancy
force exerts into the plume or the column itself
in the case of natural convection. It therefore
gives rise to a question whether or not the plume
or the column has effects on the flow in the vicin-
ity of the heating surface and hence on the heat
transfer. Accordingly, we have taken up the
question to clarify the fluid above a horizontal
line heat source and that above a point heat
source.

Formerly, Schuh [1] solved the same problems
of natural convection in air. Recently, Spalding
and Cruddace [2] calculated the velocity
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distribution of laminar buoyant flow above a
line heat source in a fluid of large Prandtl
number numerically. It seems that they studied
it as a problem to heat heavy oil stored in a tank
by horizontal steam pipes.

1. A HORIZONTAL LINE HEAT SOURCE

1. 1. Basic equations

For condition of two-dimensional convection
above a line heat source located horizontally in
large fluid space, the primary variables describing
the flow and the temperature are taken as
indicated in Fig. 1, where x and y are the vertical
and horizontal co-ordinates with the origin at
the heat source, and u, v are the velocity com-
ponents of x, y direction respectively.

X
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Heat source
Fic. 1. Definition sketch.

When a plume is formed above the source, the
terms of higher order in the equations of
continuity, motion and energy may be neglected.
Then
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where g; gravitational acceleration, §; volumetric
thermal expansion coefficient, 7; fluid tempera-
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ture above the ambient temperature, »; kine-
matic viscosity of the fluid, «; thermal diffusivity
of the fluid. The velocity and temperaturc
distributions must be symmetrical with x-axis,
and the temperature and the vertical velocity
component at a distance from the heat source
are not to be affected by it. Hence the boundary
conditions may be expressed as

v i O cufey = Uo ey 0

0.1 - 0. (4
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When we introduce the stream function

such that

nf cf <
e D )
and assume the existence of a “‘similar” solution
of the field of the velocity and the temperature
within the plume such that

EG e v GEREL 1 Gyt OE), (6)
where
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and when ©; is reckoned as an arbitrary constant
with dimension of temperature, we obtain the
following ordinary differential equations:

AT /AR Y AC R B

W3 Pr(fRY = 0, (82, b)
with the boundary conditions:
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where Pr == v/ is Prandtl number and the prime
denotes differentiation with respect to £ The
vertical and lateral velocity components # and
v are written as:

ol fro00 B =0, {

ux L uy
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v
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In this phenomena, conservation of energy
and that of momentum are respectively expressed
as:

(n

(12)

cpy |7 utdy

Q1.
{7 urdy = gB i:} (7, tdyydx.
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where ¢, is the specific heat of the fluid at con-
tants pressure, y, the specific weight of the fluid,
Q1, the rate of heat transfer from unit length of
the line source (kcal/mh). These are transformed
by (6) and (10) as:

I o
ORGP
[°_frde=3["_hde. (14

@, in (6) and (7) is defined by (13), and it is
convenient to normalize the solutions of (8)
fand A by the following formula:

[P fhdé=1. (15)*

L 2. Analytical solution of the ordinary differential
equations for Pr = 2
Now, the case where the integrand of equation
(14) is zero identically, namely

f*r—2h=0, (16)
is considered. Therefore (8a) becomes:
f!l)' + %_ffl! + %flg — 0. (17)

When (17) is integrated twice with boundary
conditions (9a),

[+ fP=a, (18)

where a is a positive integral constant, for it

means physically non-dimensional vertical
velocity component at £ = 0,
Hence the integral of (18) is
10a\ V2 3\ 1/2
f= (—3——) tanh (ff)) £ (19)

h is obtained by substituting (19) into (16) such
that:

* Equations (8) are identical to Schul’s equations,
where the condition expressed by (15), which is assumed
in his transformation, is not clearly stated. On the other
hand, Spalding and Cruddace introduce the condition
(15) instead of the first condition of equations (9a). This
may be correct logically, since the solution of (8) is not
uniquely determined without condition (15), but in this
case it may be reasonable to omit the second condition
of (9b), which is reduced from (8b), rather than the first
condition of (9a). Practically, the theoretical or numerical
calculations cannot be performed without this condition.
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3(2. 1/2

— 4 42 41
== ¢ o? sech (10) £, (20)
and this satisfies also the boundary conditions
9).

fand & given by (19) and (20) satisfy (8b) only
in the case where Prandtl number is equal to
two. a is determined by the normalizing con-
dition (15):

o =} (&} = 0-837. @n
The nondimensional vertical velocity component
is written as:

= asechz(%g)lmf. 22)

1. 3. Numerical calculation
Equations (8) are held invariable for the
transformation by

¢ =af, f=0bf h=ch, (23)

as far as the constants g, b and ¢ have the follow-
ing relations:

ab =1 and b = ac. (24

Since these constants can be taken as arbitrary
combination, the solution of (8) subject to the
conditions (9) is not unmiquely determined.
Consequently, in numerical calculation, either
f'(0) or h(0), which may be regarded as eigen-
values, can be taken to be arbitrary, and the
other is guessed by the method of trial and
error.

By substituting (23) into (15) we obtain the
following equation:

bel =1, (25)

where
I=j>, f'hdé

When a pair of solutions £ and / satisfying the
conditions (9) is found out, the above integral 7
is calculated and then constants 4, » and ¢ can
be solved simultaneously by (24) and (25).
Consequently, the solution of (8) subject to the
conditions (9) and (15) becomes:

£ = DBE f= I, h = I-th, (26)

In Figs. 2a and 2b and Fig. 3 are shown the
variations of the nondimensional vertical velocity
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f" and the nondimensional temperature h with £,
in these figures the curves for Pr = 2 show the
analytical solution and those for Pr = 0:01, 0-7
and 10 show the numerical solutions by an
electronic digital computer. In digital computa-
tion (8) are approximated in the form of finite
difference, from which are derived simultancous
equations of the first degree which are called
three terms equation. Details of these methods

Fi. 2a. Nondimensional vertical velocity distribu-
tions above a line heat source, f . The dotted line
shows the Spalding-Cruddace’s solution for Pr- -+ .

Fic. 2b. Nondimensional temperature distributions
above a line heat source, i/ Fr.
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Fii. 3. Nondimensional vertical velocity and tem-
peraturc distributions above a line heat source for
Pr =001, f" and I/~ Pr.

and the tables of numerical results are shown in
{3]. Besides, Fig. 2a contains the result obtained
by Spalding and Cruddace [2] for Pr— «. Schuh’s
result [1] for Pr —= 0-7, seems to coincide well
with corresponding curves in Figs. 2.

The accuracy of the calculation is checked,
for example, by the relation of conservation of
momentum. Then the differences between each
terms of (14) are less than 0-2 per cent of either
term for the solution of each Prandtl number.

By the way equation (14} is useful to determine
the eigenvalue f'(0) for the case where Pr - - ¥ .
This method makes the calculation more casy and
accurate than that of Spalding and Cruddace [2].

II. A POINT HEAT SOURCE

In this chapter a column of heated fluid above
a point heat source 1s analysed. Ordinary
differential equations, analytical solution for
Pr = 2, method of numerical calculation and
so on are reduced similarly to those in the
previous chapter. For the sake of simplicity the
results and the procedures of the reduction arc
listed without explanation, and the correspond-
ence 1s shown by adding to each equation the
same number as in the previous chapter,
namely (11, ). The cylindrical co-ordinate
system in this case is also indicated in Fig. 1.
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where y and v signify co-ordinate of horizontal
radial direction and velocity component of y
direction respectively.

IL. 1. Basic equations
Basic differential equations and boundary
conditions are:

a(yu) | &(yv)
o Ty = =0, (1L, 1)
ou 1 0
Ut 0 gy = g o () L)
ot ot 1 0 ot
uEfo‘va—y—Kyé;(yé“)a (1153)
du ot 1
:0; :0’ —:0’—-:0,
YEREER ST (1L, 4)
y=o; u=0,t=0.
Stream function ¢ is introduced as:
1 & 1 &
LT

Transformation formyla from the partial
differential equations to ordinary ones are

& = Gt (y/x), $ = vxf(£), t = Oph(¢), (11, 6)
where

xX*gB0,

Gp: vZ s p =

O»

2mepyvx’

(I1,7), (11, 13)

and Qj is the rate of heat transfer from a point
source (kcal/h),

The ordinary differential equations and the
boundary conditions are:

O o)

+(L 82, b)
(&n'Y + Pr(fhy =0, J

—o. J_ f N oo ]
£=0; 3 0,(5) _O,h_0,|(Hg)
&= o0; J—;;':O,h:O.

The vertical and horizontal velocity components
u and v are written as:

2Q
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!
ux %f

v =G

";" —¢ (f —f:) (11, 10)

Conservation of momentum is expressed as:

rflzdg - r he de.
0o & o

In these reductions f and A, the solution of
equation (I1, 8), are normalized by the following
formula:

(11, 14)

Jo fhdé =1 {1, 15)

Schuh’s calculation [1] corresponds to that
fand h are normalized by 2= f'hdé = 1.

H. 2. Analytical solution of the ordinary
differential equations for Pr = 2
By assuming:
f*
— —hé=0,
g f

(f" A +’%) ~o.

This equation has the same form as the equation
given in the problem of a round jet stream [4].

The solution of Equations (II, 8) for Pr =2 is
written as:

i, 16)
we obtain:

(1L, 17)

4o?
[T+ (/e
(11, 19), (11, 20)

and the nondimensional velocity components
are:

__ _
I =T eme '

é . 2a 1
i EEr
S [+ (of9)€R] . 22)
S
& 2 41 + (/4P

where
= 4/(5)/4 = 0-559. {11, 21)
The solution of equation (I, 8) for Pr = 1 are
also obtained as:
e .1
=it re Ptaraep
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and the nondimensional velocity components
are:

. |
(1L ew

¢ (éi f2) 2401 fgi gy

This reduction is described in the Appendix.

11. 3. Numerical calculation

The formulae of normalizing an arbitrary
pair of solutions of equations (II, 8) f(§) and
h(é) are :

E= S f Sy hJh

where J == [* f'hdé.

In Figs. 4a and b and Fig. 5 are shown the
nondimensional vertical velocity distribution f”/¢
and the nondimensional temperature distribution
h. In these figures, the curves for Pr -- 1 and 2
show analytical solutions and those for
Pr -~ 0-01, 0-7 and 10 show numerical solutions
by an electronic digital computer. Details of the
numerical calculation are shown in [3].

The accuracy of the numerical results, checked
by the relation of conservation of momentum,
shows that the differences between each term

(11, 26)

FiG. 4a. Nondimensional vertical velocity distribu-
tions above a point heat source, f ’/¢.

T. FUJIL

Fi. 4b. Nondimensional temperature distributions
above a point heat sourcc, /1/Pr.

of (11, 14) 1s less than | per cent of either term,
for the solution of each Prandt/ number.
Schuh’s result for Pr 0-7 seems to have
slightly higher values at ¢ 0 than those of
corresponding curves in Figs. 4a and 4b.

I1. CONCLUSIONS AND DISCUSSIONS
Steady natural convection above a horizontal
line heat source and a point heat source are
analysed mathematically. The conclusions are
as follows:
(1) Dominant nondimensional parameters in
this phenomena are, for a line heat sourcc:

\reBRE )
G VO e, Y
2

Upyr
and for a point heat source:

-3 ~
6, - V8% de, , Qu
pe 2 pyvy

(i1) In natural convection the definition of the
boundary layer thickness is not yet established
generally. When the plume thickness of the
heated fluid above a line heat source is defined
onthe nondimensionalf* ¢ plane, for example,
the value & atf’(&)  0-01 f'(0), the real plume
thickness y; is from (6), (7) and (13):
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Fic. 5. Nondimensional vertical velocity and temperature distributions above a point heat
source for Pr = 001, f’/¢ and h/Pr.

cpyv3\} 3
= (e o0

solution is also given for Pr = 1 (cf. Section IL.2.
and Appendix). In this case the relation between

Thus the plume thickens in accordance with the
two-fifths power of the distance above the heat
source, and thins with one-fifth the power of the
heating rate.

Similarly the column radius of the heated
fluid above a point heat source y, is defined as:

__ 277(‘1)'}/1/3)* 1
n= ( 8B0» b

Thus the column thickens in accordance with the
square root of the distance above the heat source,
and thins with one-fourth the power of the
heating rate.

(iii) Analytical solutions are given for Pr = 2;
together with (5-7), (13), (15), (19-21) and (26),
and the equations of same number in Chapter II.
These correspond to the case where following
relations exist at any point in the fields of
velocity and temperature. From (16) and
(11, 16),

u? = 3xgBt; for a line heat source,
u? = xgpt; for a point heat source.

Especially for a point heat source, an analytical

vertical velocity component u and temperature ¢
is not so simple as above, that is

2 Qp

(iv) The maximum vertical velocity component
Umax, the maximum temperature fmax and the
rate of flow in vertical direction W are, for a

line heat source:
Ulmax :fll(o) ( gB )gX%ng
V%Cp'y ’

timax = hi(0) (gBricp'y?)—8x~t Q4

= [ dy = () (T2 gy
p

and for a point heat source:

)

A g8\,
s = (), (zrw) o
tpmax = hp(0) 2mvepy)~ x~1 Oy,
wp = 2my [ uy dy = 2af(0) yrx,

where the values of f'(0), 4(0), . .., 2af(0) etc.
are shown in Tables | and 2.
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Table 1. Characteristic values of velocity and temperature distributions above a line heat source

Pr 10 h(0) 10)/ \/ Pr 209 o L (Pr)o
0-01 0-531 0-0720 0-720 19 42 167 1-67
07 0-808 0-373 0-446 411 203 220
2 0-837 0-560 0-396 3342 1-446 2045

10 0-875 1-117 0-353 2-90 0-606 192

o 0-933 [1] /0 0 320 269 (1] 0 1 80

Pr; Prandtl qumber.f’(O); maximum values of nondimensional vertical velocity, /(0) ; maximum
values of nondimensional temperature, 2 f ( x); coefficients of the vertical flow rate, o: tempera-~

ture layer thickness.

Table 2. Characteristic values of velocity und temperature distributions above a poini heat source

Pr (f1E) hO) HO)/Pr 2 /() 0 L (Pr)o
0-01 0-269 000795 0759 a.2970 144 144
07 0-938 0-481 0-687 47-3 611 s12
1 1-000 0667 0-667 37-70 4459 4459
2 1117 1-250 0-625 25-13 2728 1 858
10 1-403 5-61 0-561 168 098 310
b — y 0-500 , 0

Pr; Prandt] number, ( f//£)o; maximum values of nondimensional vertical velocity, A(0);
maximum values of nondimensional temperature, 2= f (> ); coefficients of the vertical flow rate,

&; temperature layer thickness.

It is remarkable that the indexes of x and Q
are quite different from those of turbulent
natural convection [5]. Moreover, it seems to be
unreasonable that the rate of flow Wj for a
point heat source is independent of the rate of
heat transfer. This comes from the fact that the
magnitude of the vertical velocity component u
and the extension of the velocity field are
cancelled out mutually with the variation of the
rate of heat transfer. However, when the rate of
heat transfer becomes smaller than a limit, the
basic equations themselves are not consistent.
Of course these regions must be excluded from
the problem.

(v) It is recognized in Figs. 2 and Figs. 4 that the
variation of the nondimensional vertical velocity
distribution f’ or f’/¢ with the variation of
Prandtl number is relatively small except for
Pr = 0-01. A similar proposition consists as to
nondimensional temperature h, when it is
arranged by &/+/Pr for a line heat source and by
h/Pr for a point heat source, From the other

point of view, the followmg relations between
the maximum nondimensional temperature Amyay
and Prandtl number are recognized approxi-
mately in Table 1 and Table 2:

hneas © \ Pr; for a hne heat source,
hpmax % Pr; for a point heat source.

(v1) The temperature layer thickness o in Table
1 and Table 2 is defined by the foliowing formulae
in order to express the extension of the tempera-
ture field.

2 {2 hdé— |7 hdég:foraline heat
source,

2 [Ohé dé = Ji© hé d€; for a point heat
source.

From those tables the following relation is
recognized approximately

!
[ .
« \ Pr
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(vii) Fig. 3 and Fig. 5 show that the extension
of the velocity field and the temperature field
are very large for Pr = 0-01. It is possible
therefore that the simplified equations of motion
and energy themselves lose their consistency.
Hence, in this case, a question arises whether
the solutions hold in the phenomena or not.
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APPENDIX. ANALYTICAL SOLUTION OF
EQUATIONS (I, 8) FOR Pr = 1
By an analogy from the solution for Pr = 2,
the solution of (II, 8) may be assumed as:

f A C

- = s k == T

- nramer " oramep @
where A, B, C and m are arbitrary constants,
These equations satisfy the conditions (II, 9).
Equation (II, 8a), into which equations (A) are
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substituted, is consistent, when the following
equation is satisfied identically,
CB (

8+(2A~—)£2 1+ 52)% (B)

Similarly, the following condition is obtained
by (11, 8b):

Pr AB = 4m. ©
Equation (B) gives
2AB — 16 = 8 and CB/4 = §;form = 3, (D)

or
2A — 16/B = 0and CB/4 = 8;form = 4, (E)
and in other values of m (B) does not hold. By

solving {C) and (D) or (C) and (E) simul-
taneously, we obtain:

m=3;Pr=1,4=1,B=12,C=2/3, (F)
m=4;Pr=2,AB=28,C = A. (G)

A pair of solution (A) with the coefficients A,

B and C expressed by formulae (F) also satisfies

the normalizing condition (II, 15). Thus the
solution for Pr = 1:

& I

st = 1wy H

= Ee " tarser @

is obtained. The nondimensional velocity com-
ponent f'/¢ is:

I 1

2 (1 ~_ 52)2 (I)
The relation between f'/¢ and A for Pr = 1 is
expressed as:

fi’)g — 3

( ¢) = $h. 4)]

The last equation in (iii) of Chapter I is derived
from this equation.

The solution for m = 4 in which coefficients
A, B and C are determined by condition (II, 15)
and (G) coincides with the solution for Pr = 2
obtained in Section II. 2.

Résumé—Cet article fait une étude mathématique de la convection naturelle laminaire en régime
permanent au-dessus d'une source de chaleur linéaire horizontale et d’une source ponctuelle. Les

solutions des fonctions élémentaires sont données pour Pr = 2, ainsi que pour Pr =

I'écoulement au-dessus d’une source ponctuelle.

1, dans le cas de
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Les distributions de vitesses et de températures pour Pr = 0.01, 0.7 et 10 sont calculées au calculateur
électromque; les differences des distributions de vitesses ou de températures dues {4 la variation du
nombre de Prandt] sont décrites en détail.

Zusammenfassung—Die stationiire laminare freic Konvektion uber einer waagerechten limenférmigen
und einer punktférmigen Wirmequelle wurde mathematisch analysiert. Flir Pr — 2 sind die Losungen
der Elementarfunktionen angegeben und fiir die Stromung uber der punktformigen Wirmequelle
auch fiirr Pr = 1.

Die Geschwindigkeits- und Temperaturvertellung fur Prandtlzahlen von 001, 0,7 und 10 wurde
auf einer elektronischen Rechenmaschine ermittelt. Differenzen in den Geschwindigkeits- und
Temperaturverteilungen, die von verschiedenen Prandtizahlen herrithren, sind ausfihrlich diskutiert.

AgOTAA— /JaeTesn MATeMAaTIMeCKITT aHI ABIECIIHL JTAOMIHAPHON ¢ TUMoHapnol « po-
GOnuOll KOHBERIWIT WAL JMHEITHLIM TOPIBORTANLIBIM 31 TOYCUHLIM  HCTOYHHKAMA TeIlLL,
1IpuBOATCA perienyst B HAeMeHTAPHBIY (PYVHENIAN 100 Pro= 2w maishe upn oivrenaunn
TOUEUHOTO MCOTOUBMK Lo Pro= 1.
G HOMOMIBIO HICKTPOHHOI CHeTHO MANIHLL BLLYHE OB PACHPEeICHIH CROPOCTI B Pe-
pepatyphi st Pro= 0,01; 0.7 i1 10, aeves uodpodine onmeaiie pasiu i pacupeies e
TEMICPATYPRL 1 CKOpOCTH opu pastinis e Hpawes,



