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Abstract-Steady laminar natural convection above a horizontal line heat source and a point heat 
source are analysed mathematically. The solutions of elementary functions are given for Pr = 2, and 
also for the flow above a point source for Pr = I. 

The velocity and temperature distributions for the case of Prandtl number equal to @01,0.7 and 10 
are computed with an electronic computer, and dBerences, caused by different Prandtl number, 

among the velocity distributions or the temperature distributions are described in detail. 

NOlMJ!XW!LATURE $9 stream function defined in equation (5) 
specific heat of the fluid at constant or (II, 5). 
pressure; 
nondimensional stream function, Subscripts 
defined in equation (6) or (II, 6); I, for the line heat source; 
gravitational acceleration; P, for the point heat source. 
Grashof number defined in equation 
(7) or (11, 7); 
nondimensional temperature, defined INTRODUCTION 
in equation (6) or (II, 6); IN NATURAL convective heat transfer, fluid 
V/K, Prandtl number; 
rate of heat transfer from unit length 

particles in the boundary layer, after separating 

of a line source (kcal/mh); 
from the vicinity of the heating surface, also 
form a certain layer which is similar to the 

rate of heat transfer from a point 
source (k&/h) ; 

boundary layer. For example, a phone of heated 
fluid above a horizontal pipe or a column above 

fluid temperature above the ambient a small body is formed. Though these circum- 
temperature ; 
velocity components indicated in Fig. 1; 

stances are similar to the trailing vortex-sheets 

co-ordinate system indicated in Fig. 1; 
in the case of forced convection, buoyancy 
force exerts into the plume or the column itself 

volumetric thermal expansion co- in the case of natural convection. It therefore 
efficient ; 
specific weight of the fluid (kg/m3); 

gives rise to a question whether or not the plume 
or the column has effects on the flow in the vicin- 

number with dimension of temperature, ity of the heating surface and hence on the heat 
defined in equation (13) or (II, 13); 
/\,&y, thermal diffusivity of the fluid ; 

transfer. Accordingly, we have taken up the 

thermal conductivity of the fluid; 
question to clarify the ffuid above a horizontal 

kinematic viscosity of the fluid ; 
line heat source and that above a point heat 
source. 

independent variable of the “similar” 
solution, defined in equation (6) or 

Formerly, Schuh [l] solved the same problems 

(11, 6); 
of natural convection in air. Recently, SpaIding 
and Cruddace [2] calculated the velocity 

597 



59s T. FUJI1 

distribution of laminar buoyant flow above a 
line heat source in a fluid of large Prandtl 
number numerically. It seems that they studied 
it as a problem to heat heavy oil stored in a tank 
by horizontal steam pipes. 

1. A I-IORIZONTAL LII\;E HEAT SOURCE 

1. 1. Basic eq~~~i~~l~ 
For condition of t~vo-dime~siona1 convection 

above a line heat source located horizontally in 
large fluid space, the primary variables describing 
the flow and the temperature are taken as 
indicated in Fig. 1, where x and 4’ are the vertical 
and horizontal co-ordinates with the origin at 
the heat source, and U, u are the velocity com- 
ponents of x, JV direction respectively. 

i 

ture above the ambient temperature, V; kine- 
matic viscosity of the fluid, rc; thermal diffusivity 
of the fluid. The velocity and temperature 
distributions must be symmetrical with s-axis, 
and the temperature and the vertical velocity 
camponent at a distance from the heat source 
are not to be affected by it. Hence the boundary 
conditions may be expressed as- 

and assume the existence of ;t “similar” solution 
of the field of the velocity and the temperature 
within the plume such that 

6 \ ’ P 

$2 

and when 91 is reckoned as an arbitrary constant 
\vith dimension of temperature, we obtain the 
following ordinary differential equations : 

with the boundarv conditions: 
FIG, 1. Definition sketch. 

[ -- 0; f’: -. 0, f” -:= 0, h - 0 
’ 

; 

When a plume is formed above the source, the 
5 I- ,x1 ; f“ -_: (_)_ /I _-= 0, ,; @a* h) 

terms of higher order in the equations of where PY := V/K is Prandtl number and the prime 
continuity, motion and energy may be neglected. denotes differentiation with respect to (. The 
Then vertical and lateral velocity components 

c are written as: 
(i) 

11.X 
- -.;. 

,, 
GE:frsT z 

., 
. {(#j ; (f”), 

tt and 

(10) 

(2) ” 
” 

Jn this phenomena, conservation of energy 

i1r iit pt and that of momentum are respectively expressed 
11 ;- _i- I, ZT K 

C’S C.1‘ r 
&” 

(3) as: 

C’pY j”’ / tit cl_Y Qr. (I I) 
where g; gravitational acceleration, 6 ; volumetric 
thermal expansion coefficient, t; Auid tempera- j: ~ i$ do’ -I g@ 1; (.I‘ “,,, I dy) dx. (12) 
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where c, is the specific heat of the fluid at con- 
tan& pressure, y, the specific weight of the ff uid, 
Qz, the rate of heat transfer from unit length of 
the line source (kcal/mh). These are transformed 
by (6) and (10) as : 

f”“, f ‘2 d$ = ;- ST, h dl. (14) 

0~ in (6) and (7) is defined by (13), and it is 
convenient to normalize the solutions of (8) 
f and h by the following formula: 

J”J’h de = 1. (15)* 

I, 2. Ana~yti~a~~o~ution of the ordinary d~~ere~tia~ 
equations for Pr = 2 

Now, the case where the integrand of equation 
(14) is zero identically, namely 

f’a - $hsO, (16) 

is considered. Therefore @a) becomes : 

f !lf + gff” + *f’z = 0. (17) 

When (17) is integrated twice with boundary 
conditions (9a), 

f’+ qGf2 = a, (18) 

where a is a positive integral constant, for it 
means physically non-dimensional vertical 
velocity component at [ = 0, 

Hence the integral of (18) is 

IOU If2 
f= (-) 

3a Ifa 

3 
tanh lo 

0 
E. (19) 

h is obtained by substituting (19) into (16) such 
that: 

* Equations (8) are identical to Schuh’s equations, 
where the condition expressed by (Pi}, which is assumed 
in his transformation, is not clearly stated. On the other 
hand, Spalding and Cruddace introduce the condition 
(15) instead of the first condition of equations (9a). This 
may be correct logically, since the solution of (8) is not 
uniquely determined without condition (15), but in this 
case it may be reasonable to omit the second condition 
of (9b), which is reduced from (Sb), rather than the first 
condition of (9a). Practically, the theoretical or numerical 
calculations cannot be performed ~thout this condition. 

3a l/2 
h = $ a2 seeh4 lo 

0 
.$, f20) 

and this satisfies also the boundary conditions 
(9). 

f and h given by (19) and (20) satisfy (8b) only 
in the case where Prandtl number is equal to 
two. a is determined by the normalizing con- 
dition (15): 

a c= $ (J$))” + O-837. (21) 

The nondimensional vertical velocity component 
is written as: 

f. (22) 

I. 3. ~urner~~a~ c~~~~~ation 
Equations (8) are held invariable for the 

transformation by 

E = a4,f = bj; h = c/i, (23) 

as far as the constants a, b and c have the follow- 
ing relations: 

ab = 1 and b2 = ac. (24 

Since these constants can be taken as arbitrary 
combination, the solution of (8) subject to the 
conditions (9) is not uniquely determined. 
Consequently, in numerical calculation, either 
f’(0) or h(O), which may be regarded as eigen- 
values, can be taken to be arbitrary, and the 
other is guessed by the method of trial and 
error. 

By substituting (23) into (15) we obtain the 
foIlowing equation : 

where 
bcI= 1, 

I = Jmm f’h d& 

(25) 

When a pair of solutions f and li satisfying the 
conditions (9) is found out, the above integral I 
is calculated and then constants a, b and c can 
be solved simultaneously by (24) and (25). 
Consequently, the solution of (8) subject to the 
conditions (9) and (15) becomes : 

5: =r I@, f z 1-g h = I-*/j. (26) 

In Figs. 2a and 2b and Fig. 3 are shown the 
variations of the nondimensional vertical velocity 
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f’ and the nondimensional temperature h with f. 
In these figures the curves for Pr = 2 show the 
analytical solution and those for PP == 041. 0.7 
and 10 show the numerical solutions by an 
electronic digital computer. In digital computa- 
tion (8) are approximated in the form of finite 
difference, from which are derived simultaneous 
equations of the first degree which are called 
three terms equation. Details of these methods 

iz 
Fw. 2a. Nond~nlensio~l verttcal velocity distrrbu- 
tions above a line heat source, f ‘. The dotted line 
shows the Spalding-Cruddace’s solution for Pr ,-f . 

i I -T-----T- 
_.___I-_-- 

1 

FIG. 2b. Nondimensional temperature dlstributwns 
above a line heat source, h/\‘Pr. 

FKL 3. Nondimensional vertical velocity and tem- 
perature distributions above a line heat source for 

Pr = 0.01, f' and Ir,‘-\‘Pr. 

and the tables of numerical results are shown in 
[3]. Besides, Fig. 2a contains the result obtained 
by Spalding and Cruddace [2] for Pr -- IX. Schuh’s 
result [I] for Pr -= O-7, seems to coincide vvelt 
with corresponding curves in Figs. 2. 

The accuracy of the calculation is checked, 
for example, by the relation of conservation of 
momentum. Then the differences between each 
terms of (14) are less than 0.2 per cent cjf either 
term for the solution of each Prandtl number. 

By the way equation (14) is useful to determine 
the eigenvalue f’(O) for the case where Pr - - r 
This method makes the calculation more easy and 
accurate than that of Spalding and Cruddace (21. 

II. A POINT HEAT SOURCE 
In this chapter a column of heated fluid above 

a point heat source is analysed. Ordinary 
differential equations, analytical solution for 
Fr z 2. method of numerical calculation and 
so on are reduced similarly to those in the 
previous chapter. For the sake of simplicity the 
results and the procedures of the reduction arc 
listed without explanation, and the correspond- 
ence is shown by adding to each equation the 
same number as in the previous chapter, 
namely (II, ). The cylindrical co-ordinate 
system in this case is also indicated in Fig. 1. 



THEORY OF STEADY LAMINAR NATURAL CONVECTION 601 

where Y and v signify co-ordinate of horizontal 
radial direction and velocity component of Y 

ux = G,JI uv = - 5: 
V 

direction respectively. 
E’ V 

Conservation of momentum is expressed as: 

II. 1. Basic equations 
Basic differential equations and boundary 

conditions are : 

(II, 14) 

In these reductions f and h, the solution of 
equation (II, S), are normalized by the following 

(II, l) formula: 

J,“flhd[ = 1. (II, 15) 

Schuh’s calculation [I] corresponds to that 
f and h are normalized by 2rrJ:f’h d[ = 1. 

Stream function 4 is introduced as: 

II. 2. Analytical solution of the ordinary 
diferential equations for Pr = 2 

By assuming : 

!?_h,CCO 
k? ’ 

04 16) 

1 a* 1 a* 
we obtain: 

--_=u __=--_ 
Y aY ‘yax * (11, 5) 

(II, 17) 
Transformation formula from the partial 
differential equations to ordinary ones are This equation has the same form as the equation 

E = GP*‘~ (Y/X>, # = vxf(0, t = @ph(t), (II, 6) 
given in the problem of a round jet stream [4]. 

The solution of Equations (II, 8) for Pr = 2 is 

where written as: 

= %% -----,@,= Qp a$ 4a2 G 
P 

V2 2rrCpyVX’ 
(11,7), (II, 13) f = 1+052 ’ h = [l + (a/4)ta14’ 

and QP is the rate of heat transfer from a point (II, 19), (II, 20) 

source (kcal/h), and the nondimensional velocity components 
The ordinary differential equations and the are: 

boundary conditions are : 
f 2a 1 + h = 0, 1 (II, 8a f’ = L1 + (a/4)‘t212’ 

([h’)’ + Prcfh)’ = 0, 
1 3 

b) 

J i 

(II, 22) 

= 0, h’ = 0, 1 where 

i 

(II, 9) 
a = 1/(5)/4 + 0.559. (II, 21) 

t=co;$=O,h=O. The solution of equation (II, 8) for Pr = 1 are 
also obtained as: 

The vertical and horizontal velocity components 
u and v are written as: 

2Q 

f2 
f = 2(1 + 2% pj ’ 
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and the nondimensional velocity components 
are : 

This reduction is described in the Appendix. 

II. 3. Numerical calculatiorz 
The formulae of normalizing an arbitrary 

pair of solutions of equations (II, 8) f(f) and 
I;(<) are : 

In Figs. 4a and b and Fig. 5 are shown the 
nondimensional vertical velocity distributionf’lt 
and the nondimensional temperature distribution 
k. In these figures, the curves for Pr -~ 1 and 2 
show analytical solutions and those for 
Pr ~~ 0.01, O-7 and 10 show numerical solutions 
by an electronic digital computer. Details of the 
numerical calculation are shown in [3]. 

The accuracy of the numerical results, checked 
by the relation of conservation of momentum, 
shows that the differences between each term 

FIG. 4a. Nondimensional vertical velocity distribu- 
tions above a point heat source, J ‘15. 

2 6 8 

FK,. 4b. Nondlmcnsronal tcmperuturc dlstrlbutwll\ 
above a point heat source. l!iPI. 

of (II, 14) IS less than 1 per cent of either term, 
for the solution of each Prandtl number. 
Schuh’s result for Pr 0.7 seems to have 
slightly higher values at C 0 than tho\c oi 
corresponding curves in Figs. 4a and 4b. 

111. CONCLUSIONS AND DISCUSSLONS 

Steady natural convection above a horizontal 
line heat source and a point heat source are 
analysed mathematically. The conclusions are 
as follows : 

(i) Dominant nondimensional parameters III 

this phenomena are, for a lint heat source: 

and for a point heat sourct’: 

(ii) In natural convection the definition of the 
boundary layer thickness is not yet established 
generally. When the plume thickness of the 
heated fluid above a line heat source is defined 
on the nondimensionalf” < plane, for example, 
the value E, at f’( t,) 0.01 f’(O), the real plume 
thickness ~1~ is from (6), (7) and (13): 
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FIG. 5. Nondimensional vertical velocity and temperature distributions above a point heat 
source for Pr = 0.01, f 'I.$ and h/Pr. 

Thus the plume thickens in accordance with the 
two-fifths power of the distance above the heat 
source, and thins with one-fifth the power of the 
heating rate. 

Similarly the column radius of the heated 
fluid above a point heat source y1 is defined as: 

Thus the column thickens in accordance with the 
square root of the distance above the heat source, 
and thins with one-fourth the power of the 
heating rate. 

(iii) Analytical solutions are given for Pr = 2; 
together with (57), (13), (15), (19-21) and (26), 
and the equations of same number in Chapter II. 
These correspond to the case where following 
relations exist at any point in the fields of 
velocity and temperature. From (16) and 
(1% 16), 

u2 = sxgjlt; for a line heat source, 

u2 = xg/3t; for a point heat source. 

Especially for a point heat source, an analytical 

solution is also given for Pr = 1 (cf. Section 11.2. 
and Appendix). In this case the relation between 
vertical velocity component u and temperature t 
is not so simple as above, that is 

(iv) The maximum vertical velocity component 
urnax, the maximum temperature tmex and the 
rate of flow in vertical direction W are, for a 
line heat source: 

t1 max = hz (0) (g/3v2cp~4)-k’ Q$, 

w = J”“oo YU dy = 2f(co) XgQ1’ 

and for a point heat source: 

tpmax = hp(O) (271.~cpy)-l x-l Qp, 

wP = 2~ $,” uy dy = 2@(co) yvx, 

where the values off’(O), h(O), . . . , 2~f((co) etc. 
are shown in Tables 1 and 2. 
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Table 1. Churucteristic values of’ velocity and temperature distributions above a lisle heut JOWW 

Pr f ‘(0) h(O) /f(O)/ \/PI. 2 ff,j’, r, \ (/+)G 
____-___-__._ .._.~ 

0.01 0,531 0.0720 0,720 19 42 16 7 L -0’ 
0.7 0.808 0.373 0.446 4 II ‘~03 ’ ‘0 
2 0.837 0.560 0.396 3 342 I 436 5 ;ss 

IO 0.875 1.1 I7 0,353 2.90 0,606 I .O’ 
-,~s O.Y33 [I] I’ 0 320 2 69 II] 0 1 x0 

Pr; Prandtl number.f’(O); maximum values of nondimensmnal certical ccloclty. MO); maxmum 
values of nondimensional temperature. 2f‘( 2); coefficients of the vertical flow rate. L): tempera- 
ture layer thickness. 

Pt ( f ‘ii% 
---__- 
0.01 0.269 
0.7 0.938 
I I ,000 
, 

10 
I.117 
I ,403 

I _- 

h(O) 

0.00795 
0,481 
0,667 

5.61 1.250 
/ 

h(O)/P/ 

0 759 
0.687 
0,667 
0.625 
0.561 
0.500 

2nJc 1) n i tPr)o 

a. 2970 I44 I .1.-t 
47.3 6.1 I 5.11 
37.70 3.459 3 -I50 
25. 2.728 2 85X 
Ifi 8 I3 0 98 .I IO 

0 

Pv; Prandtl number, (f’/&; maxlmum values of nondmlensional \ertlcai wlowy, h(O): 
maximum values of nondimensional temperature, 27rf’( T. ): coefficients of the hcrtical flow rate, 
6; temperature layer thickness. 

It is remarkable that the indexes of s and Q point of view, the followmg relations between 
are quite different from those of turbulent the maximum nondimensional temperature h,,, 
natural convection [5]. Moreover, it seems to be and Prandtl number are recognized approxi- 
unreasonable that the rate of flow W,, for a mately in Table 1 and Table 2: 
point heat source is independent of the rate of 
heat transfer. This comes from the fact that the 
magnitude of the vertical velocity component II 
and the extension of the velocity field are 
cancelled out mutually with the variation of the 
rate of heat transfer. However, when the rate of 
heat transfer becomes smaller than a limit, the 
basic equations themselves are not consistent. 
Of course these regions must be excluded from 
the problem. 

/, 
11rr:1\ r \ Pr; for a Ime heat source, 

h I,m:ls r/ Pr; for a point heat source. 

(VI) The temperature layer thickness b m Table 
1 and Table 2 is defined by the following formulae 
in order to express the extension of the tempera- 
ture field. 

2 j”“& h dE : j’X’T, /I dt: for a line heat 
source. 

(v) It is recognized in Figs. 2 and Figs. 4 that the 
variation of the nondimensional vertical velocity 
distribution f’ or f’]t with the variation of 
Prandtl number is relatively small except for 
Pr = 0.01. A similar proposition consists as to 
nondimensional temperature h, when it is 
arranged by h/dPr for a line heat source and by 
h/Pr for a point heat source, From the other 

2 Jglz /I[ dE Z j,y II~ d6; for a point heat 
source. 

From those tables the followmg relation is 
recognized approximately 

I 
tjcz \ Pr’ 
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(vii} Fig. 3 and Fig. 5 show that the extension 
of the velocity field and the temperature field 
are very large for Pr = 0.01. It is possible 
therefore that the simplified equations of motion 
and energy themselves lose their consistency. 
Hence, in this case, a question arises whether 
the solutions hold in the phenomena or not. 

It is a pleasure to acknowledge here the kind advices of 
Prof. K, Yamagata and Prof. M. Kurihara of Kyushu 
University, and the cooperations in carrying out 
numerical calculation by an electronic digital computer, 
by Prof. M. Takata of Kyushu University, Ass. Prof. 
Y. Fujikawa of Rikkyo University and Mrs. T. Ishikawa 
of Computing Center of Inst. of JUSE. 
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APPENDIX. ANALYTICAL SOLUTION OF 

EQUATIONS (II, 8) FOR Pr = 1 

By an analogy from the solution for Pr = 2, 
the solution of (II, 8) may be assumed as: 

where _4, 3, C and m are arbitrary constants. 
These equations satisfy the conditions (II, 9) 
Equation (II, Sa), into which equations (A) are 

substituted, is consistent, when the following 
equation is satisfied identically, 

8+(2A--)52~~jl+$S2)l-~. (B) 

Similarly, the following condition is obtained 
by (II, 8b): 

Pr AB E 4m. 

Equation (B) gives 
(Cl 

2AB-16=8andCB/A=8;form=3, (D) 

or 

2A-16jB=OandCB/A=8;form==4, (E) 

and in other values of na (B) does not hold. By 
solving (C) and (D) or (C) and (E) simul- 
taneously, we obtain: 

m=3;Pr= l,A= l,B= 12,C=2/3, (F) 

m=4;Pr=2,AB=&C==A. (G) 

A pair of solution (A) with the coefficients A, 
B and C expressed by formulae (F) also satisfies 
the normalizing condition (II, 15). Thus the 
solution for Pr = 1: 

is obtained. The nondimensional velocity com- 
ponentf’lb is: 

L- l 
6 (1+-&m 

The relation betweenf’if and h for Pr = 1 is 
expressed as : 

f 't 

0 
r = 3.h. (J) 

The last equation in (iii) of Chapter III is derived 
from this equation. 

The solution for m = 4 in which coefficients 
A, B and C are determined by condition (II, 15) 
and (G) coincides with the solution for Pr = 2 
obtained in Section II. 2. 

RC?sumt?-Cet article fait une etude mathematique de la convection naturelle laminaire en regime 
permanent au-dessus d’une source de chaleur liniaire horizontale et d’une source ponctuelle. Les 
solutions des fonctions Blementaires sont donnees pour Pr = 2, ainsi que pour Pr = 1, dans le cas de 
l’ecoulement au-dessus dune source ponctuelle. 
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Les distributions de vitesses et de temperatures pour Pv == 0.0 I, 0,7 et 10 sent calcul6es au calculateur 
Clectromque: les differences des distributions de vitesses OLI de temperatures dues i la variation du 

nombre de Prandtl sont d&rites en detail. 

Zusammenfassung-Die stationlre laminare freic Kor~vektion tiber einer waagerechtcn henfdrmigen 
und einer punktfarmigen Wgrmequelle wurde mathemuhsch analysiert. Fiir Pr -- 2 sind die Ldsungen 
der Elementarfunktionen angegeben und fiir die Strdmung ilber der punktffirmigen Wiirmequellc 
such fiir Pr = 1. 

- _ 

Die Geschwindi~eits- und Temperatiirverteliung fur PrandtIzahlen von 0.01, 0,7 und IO wurdc 
auf einer elektro~ischen R~he~asch~ne ermittelt. Differenzen in den Ge~ebwindi~keits- und 


